A comprehensive review on polymer matrix composites: material selection, fabrication, and application

Polymer matrix composites have always piqued the curiosity of the scientific, technological communities and are being recognized as the best option for a wide range of engineering applications owing to their superior mechanical qualities, namely stiffness and high specific strength. In addition, these materials offer useful design flexibility and comparatively better fatigue and corrosion resistance than many other materials. These are thus recognized as advanced composite materials due to their superior mechanical properties and comparative ease of fabrication. As a result, manufacturers have turned towards these advanced composites for a wide range of applications in a variety of industries. A manufacturer or designer must choose appropriate constituents of a composite for a particular application while considering all the composite’s properties. This stands as one of the main objectives of this review, i.e. to explore various matrices and reinforcement combinations used for different applications taking their properties into accord. This extensive analysis includes a detailed review of certain selective fabrication techniques. In addition to that, polymer matrix composites’ numerous applications in today’s environment are also discussed, as well as the challenges that they pose in diverse contexts. Through this review, researchers will achieve a better understanding of the significance of these materials and their adaptability in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

High-Performance Polymer-Matrix Composites: Novel Routes of Synthesis and Interface-Structure-Property Correlations

Chapter © 2021

Composites and Nanocomposites

Chapter © 2019

Composites and Nanocomposites

Chapter © 2019

Explore related subjects

References

  1. Yashas Gowda TG, Sanjay MR, Subrahmanya Bhat K, Madhu P, Senthamaraikannan P, Yogesha B (2018) Polymer matrix-natural fiber composites: an overview. Cogent Eng 5(1):1446667. https://doi.org/10.1080/23311916.2018.1446667ArticleGoogle Scholar
  2. Friedrich K, Chang L, Haupert F (2011) Current and future applications of polymer composites in the field of tribology. Compos Mater. https://doi.org/10.1007/978-0-85729-166-0_6ArticleGoogle Scholar
  3. Friedrich K, Breuer U (2015) Multifunctionality of polymer composites: challenges and new solutions. William Andrew, Kidlington Oxford, UK Google Scholar
  4. Wang RM, Zheng SR, Zheng YPG (2011) Polymer matrix composites and technology. Woodhead Publishing Limited, Cambridge, UK Google Scholar
  5. Aji IS, Zainudin ES, Abdan K, Sapuan SM, Khairul MD (2013) Mechanical properties and water absorption behaviour of hybridized kenaf/pineapple leaf fibre-reinforced high-density polyethylene composite. J Compos Mater 47(8):979–990. https://doi.org/10.1177/0021998312444147ArticleCASGoogle Scholar
  6. Rutkowski JV, Levin BC (1986) Acrylonitrile–butadiene–styrene copolymers (ABS): pyrolysis and combustion products and their toxicity- a review of the literature. Fire Mater 10(3–4):93–105. https://doi.org/10.1002/fam.810100303ArticleCASGoogle Scholar
  7. Callister WD Jr, Rethwisch DG (2020) Fundamentals of materials science and engineering: an integrated approach. John Wiley & Sons Google Scholar
  8. Campbell FC Jr (2011) Manufacturing technology for aerospace structural materials. Elsevier, Amsterdam, Netherlands Google Scholar
  9. Kainer KU (2006) Basics of metal matrix composites. Metal matrix composites. Wiley, pp 1–54 Google Scholar
  10. Xiao L, Lu W, Qin J, Chen Y, Zhang D, Wang M, Zhu F, Ji B (2009) Creep behaviors and stress regions of hybrid reinforced high temperature titanium matrix composite. Compos Sci Technol 69(11–12):1925–1931. https://doi.org/10.1016/j.compscitech.2009.04.009ArticleCASGoogle Scholar
  11. Stojanovic B, Glisovic J (2021). Application of ceramic matrix composite in automotive industry. https://doi.org/10.1016/B978-0-12-819724-0.00018-5ArticleGoogle Scholar
  12. Poletti C, Balog M, Schubert T, Liedtke V, Edtmaier C (2008) Production of titanium matrix composites reinforced with SiC particles. Compos Sci Tech 68(9):2171–2177 CASGoogle Scholar
  13. U.S. Congress, Office of Technology Assessment (1988) Advanced materials by design, OTAE-351 (Washington, DC: U.S. Government Printing Office). Polymer matrix composites pp.73–95. https://www.princeton.edu/~ota/disk2/1988/8801/880106.PDF
  14. Kainer KU (2006) Custom-made materials for automotive and aerospace engineering. Metal matrix composites. John Wiley & Sons Inc, Hoboken, NJ. https://doi.org/10.1002/3527608117BookGoogle Scholar
  15. Wang RM, Zheng SR, Zheng YP (2011) Polymer matrix composites and technology. Elsevier Google Scholar
  16. Even C, Arvieu C, Quenisset JM (2008) Powder route processing of carbon fibres reinforced titanium matrix composites. Comp Sci Tech 68(6):1273–1281. https://doi.org/10.1016/j.compscitech.2007.12.014ArticleCASGoogle Scholar
  17. Cyriac A (2011) Metal matrix composites: history, status, factors and future. Graduate College of Oklahoma State University Google Scholar
  18. Callister Jr WD (2007) Materials science and engineering. John Wiley and Sons Inc., New York Google Scholar
  19. Tsekmes IA, Kochetov R, Morshuis PHF, Smit JJ (2013) Thermal conductivity of polymeric composites: a review. In 2013 IEEE Int Conf on Solid Dielectrics (ICSD) IEEE pp. 678–681
  20. Wang Y, Chen Z, Yu S, Awuye D, Li B, Liao J, Luo R (2017) Improved sandwich structured ceramic matrix composites with excellent thermal insulation. Comp Part B Eng 129:180–186. https://doi.org/10.1016/j.compositesb.2017.07.068ArticleCASGoogle Scholar
  21. Talib AAA, Jumahat A, Jawaid M, Sapiai N, Leao AL (2021) Effect of wear conditions, parameters and sliding motions on tribological characteristics of basalt and glass fibre reinforced epoxy composites. Materials 14(3):701. https://doi.org/10.3390/ma14030701ArticleCASGoogle Scholar
  22. Campbell FC (2010) Structural composite materials. In: Introduction to composite materials. ASM International, pp 1–18
  23. Sharma AK, Bhandari R, Aherwar A, Rimašauskienė R (2020) Matrix materials used in composites: a comprehensive study. Mater Today Proc 21:1559–1562. https://doi.org/10.1016/j.matpr.2019.11.086ArticleGoogle Scholar
  24. Qu XH, Zhang L, Mao WU, Ren SB (2011) Review of metal matrix composites with high thermal conductivity for thermal management applications. Progress Nat Sci Mater Int 21(3):189–197. https://doi.org/10.1016/S1002-0071(12)60029-XArticleGoogle Scholar
  25. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics. Compos Sci Technol 63(9):1259–1264 CASGoogle Scholar
  26. Mahesh V, Joladarashi S, Kulkarni SM (2021) A comprehensive review on material selection for polymer matrix composites subjected to impact load. Def Technol 17(1):257–277. https://doi.org/10.1016/j.dt.2020.04.002ArticleGoogle Scholar
  27. Wang Z, Xu L, Sun X, Shi M, Liu J (2017) Fatigue behavior of glass fiber reinforced epoxy composites embedded with shape memory alloy wires. Compos Struct 178:311–319. https://doi.org/10.1016/j.compstruct.2017.07.027ArticleGoogle Scholar
  28. Gupta N, Sano T (2020) Metal and polymer matrix composites. J Mater 2(6):2269–2271. https://doi.org/10.1007/s11837-020-04168-7ArticleGoogle Scholar
  29. Begley MR, Gianola DS, Ray TR (2019) Bridging functional nanocomposites to robust macroscale devices. Sci 364:6447. https://doi.org/10.1126/science.aav4299ArticleCASGoogle Scholar
  30. Rajan VS, Govindaraju M, Ramu M, Satheeshkumar V (2020) Influence of metal foam properties on performance of polymer composite spur gear. Mater Today Proc 24:1244–1250. https://doi.org/10.1016/j.matpr.2020.04.439ArticleCASGoogle Scholar
  31. Ramanathan A, Krishnan PK, Muraliraja R (2019) A review on the production of metal matrix composites through stir casting–Furnace design, properties, challenges, and research opportunities. J Manuf Process 42:213–245. https://doi.org/10.1016/j.jmapro.2019.04.017ArticleGoogle Scholar
  32. Sam M, Jojith R, Radhika N (2021) Progression in manufacturing of functionally graded materials and impact of thermal treatment- a critical review. J Manuf Process 68:1339–1377. https://doi.org/10.1016/j.jmapro.2021.06.062ArticleGoogle Scholar
  33. Brechtl J, Li Y, Li K, Kearney L, Nawaz K, Flores-Betancourt A, Thompson M, Rios O, Momen AM (2021) Structural, thermal, and mechanical characterization of a thermally conductive polymer composite for heat exchanger applications. Polymers 13(12):1970. https://doi.org/10.3390/polym13121970ArticleCASGoogle Scholar
  34. Vishwakarma SK, Pandey P, Gupta NK (2017) Characterization of ABS material: a review. J Res Mech Eng 3(5):13–16 Google Scholar
  35. Olivera S, Muralidhara HB, Venkatesh K, Gopalakrishna K, Vivek CS (2016) Plating on acrylonitrile–butadiene–styrene (ABS) plastic: a review. J Mater Sci 51(8):3657–3674. https://doi.org/10.1007/s10853-015-9668-7ArticleCASGoogle Scholar
  36. Kamelian FS, Saljoughi E, Shojaee Nasirabadi P, Mousavi SM (2018) Modifications and research potentials of acrylonitrile/butadiene/styrene (ABS) membranes: a review. Polym Compos 39(8):2835–2846. https://doi.org/10.1002/pc.24276ArticleCASGoogle Scholar
  37. Manish GD, Sharma S, Akash SM (2018) A Review on testing methods of recycled acrylonitrile butadiene-styrene. Mater Today Proc 5(14):28296–28304. https://doi.org/10.1016/j.matpr.2018.10.113ArticleCASGoogle Scholar
  38. Vidakis N, Petousis M, Maniadi A, Koudoumas E, Vairis A, Kechagias J (2020) Sustainable additive manufacturing: mechanical response of acrylonitrile-butadiene-styrene over multiple recycling processes. Sustainability 12(9):3568. https://doi.org/10.3390/su12093568ArticleCASGoogle Scholar
  39. Haghdan S, Smith GD (2015) Natural fiber reinforced polyester composites: a literature review. J Reinf Plast Compos 34(14):1179–1190. https://doi.org/10.1177/0731684415588938ArticleCASGoogle Scholar
  40. Rouison D, Couturier M, Sain M, MacMillan B, Balcom BJ (2005) Water absorption of hemp fiber/unsaturated polyester composites. Polym Compos 26(4):509–525. https://doi.org/10.1002/pc.20114ArticleCASGoogle Scholar
  41. Mohd Nurazzi N, Khalina A, Sapuan SM, Dayang Laila AHAM, Rahmah M, Hanafee Z (2017) A review: fibres, polymer matrices and composites. Pertanika J Sci Technol 25(4):1085–1102 Google Scholar
  42. Skrifvars M (2000) Synthetic modification and characterisation of unsaturated polyesters. Helsinki, Finland Google Scholar
  43. Levchik SV, Weil ED (2005) Flame retardancy of thermoplastic polyesters—a review of the recent literature. Polym Int 54(1):11–35. https://doi.org/10.1002/pi.1663ArticleCASGoogle Scholar
  44. Sanadi AR, Prasad SV, Rohatgi PK (1986) Sunhemp fibre-reinforced polyester. J Mater Sci 21(12):4299–4304. https://doi.org/10.1007/BF01106545ArticleCASGoogle Scholar
  45. Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67(7–8):1674–1683. https://doi.org/10.1016/j.compscitech.2006.06.019ArticleCASGoogle Scholar
  46. Dinakaran K, Ramesh H, Joseph AD, Murugan R, Jothi S (2019) Development and characterization of areca fiber reinforced polymer composite. Mater Today Proc 18:934–940. https://doi.org/10.1016/j.matpr.2019.06.528ArticleCASGoogle Scholar
  47. Venoor V, Park JH, Kazmer DO, Sobkowicz MJ (2021) Understanding the effect of water in polyamides: a review. Polym Rev 61(3):598–645. https://doi.org/10.1080/15583724.2020.1855196ArticleCASGoogle Scholar
  48. Heitner HI (1994) Encyclopedia of chemical technology, 4th edn. In: Howe-Grant M (ed) Kroschwitz JI. John Wiley & Sons, pp 11–61 Google Scholar
  49. Trigo-López M, García JM, Ruiz JAR, García FC, Ferrer R (2002) Aromatic polyamides-encyclopedia of polymer science and technology. John Wiley & Sons, Inc, pp 1–51. https://doi.org/10.1002/0471440264.pst249.pub2BookGoogle Scholar
  50. US Federal Trade Commission (1995) The textile fiber products identification act, 16 CFR Part 303.7. Federal Register 60:234
  51. Desio GP (1996) Characterization and properties of polyphthalamide/polyamide blends and polyphthalamide/polyamide/polyolefin blends. J Vinyl Addit Technol 2(3):229–234. https://doi.org/10.1002/vnl.10131ArticleCASGoogle Scholar
  52. Marchildon K (2011) Polyamides–still strong after seventy years. Macromol React Eng 5(1):22–54. https://doi.org/10.1002/mren.201000017ArticleCASGoogle Scholar
  53. Holmes DR, Bunn CW, Smith DJ (1955) The crystal structure of polycaproamide: nylon 6. J Polym Sci 17(84):159–177. https://doi.org/10.1002/pol.1955.120178401ArticleCASGoogle Scholar
  54. Kaya E (2009) Investigation of the relationship between polymer structures and thermal, mechanical, viscoelastic properties. The University of Southern Mississippi Google Scholar
  55. Jin FL, Li X, Park SJ (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11. https://doi.org/10.1016/j.jiec.2015.03.026ArticleCASGoogle Scholar
  56. Choy IC, Plazek DJ (1986) The physical properties of bisphenol-A-based epoxy resins during and after curing. Polym Sci B Polym Phys 24(6):1303–1320. https://doi.org/10.1002/polb.1986.090240609ArticleCASGoogle Scholar
  57. May C (ed) (2018) Epoxy resins: chemistry and technology. Routledge. https://doi.org/10.1002/pol.1988.140261212BookGoogle Scholar
  58. Ahmadi Z (2019) Nanostructured epoxy adhesives: a review. Prog Org Coat 135:449–453. https://doi.org/10.1016/j.porgcoat.2019.06.028ArticleCASGoogle Scholar
  59. Jayan JS, Saritha A, Joseph K (2018) Innovative materials of this era for toughening the epoxy matrix: a review. Polym Compos 39(S4):E1959–E1986. https://doi.org/10.1002/pc.24789ArticleCASGoogle Scholar
  60. Park SJ, Jin FL, Lee C (2005) Preparation and physical properties of hollow glass microspheres-reinforced epoxy matrix resins. Mater Sci Eng A 402(1–2):335–340. https://doi.org/10.1016/j.msea.2005.05.015ArticleCASGoogle Scholar
  61. Jin FL, Park SJ (2006) Thermal properties and toughness performance of hyper branched-polyimide-modified epoxy resins. Polym Sci B Polym Phys 44(23):3348–3356. https://doi.org/10.1002/polb.20990ArticleCASGoogle Scholar
  62. Yoo MJ, Kim SH, Park SD, Lee WS, Sun JW, Choi JH, Nahm S (2010) Investigation of curing kinetics of various cycloaliphatic epoxy resins using dynamic thermal analysis. Eur Polym J 46(5):1158–1162. https://doi.org/10.1016/j.eurpolymj.2010.02.001ArticleCASGoogle Scholar
  63. Liu W, Wang Z (2011) Silicon-containing cycloaliphatic epoxy resins with systematically varied functionalities: synthesis and structure/property relationships. Macromol Chem Phys 212(9):926–936. https://doi.org/10.1002/macp.201000779ArticleCASGoogle Scholar
  64. Park SJ, Kim TJ, Lee JR (2000) Cure behavior of diglycidylether of bisphenol A/trimethylolpropane triglycidylether epoxy blends initiated by thermal latent catalyst. Polym Sci B Polym Phys 38(16):2114–2123. https://doi.org/10.1002/1099-0488(20000815)38:16%3C2114::AID-POLB50%3E3.0.CO;2-8ArticleCASGoogle Scholar
  65. Kwak GH, Park SJ, Lee JR (2000) Thermal stability and mechanical behavior of cycloaliphatic–DGEBA epoxy blend system initiated by cationic latent catalyst. J Appl Polym Sci 78(2):290–297. https://doi.org/10.1002/1097-4628(20001010)78:2%3c290::AID-APP80%3e3.0.CO;2-9ArticleCASGoogle Scholar
  66. Jin FL, Park SJ (2008) Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer. Mater Sci Eng A 478(1–2):402–405. https://doi.org/10.1016/j.msea.2007.05.053ArticleCASGoogle Scholar
  67. Lee MC, Ho TH, Wang CS (1996) Synthesis of tetrafunctional epoxy resins and their modification with polydimethylsiloxane for electronic application. J Appl Polym Sci 62(1):217–225. https://doi.org/10.1002/(SICI)1097-4628(19961003)62:1%3C217::AID-APP25%3E3.0.CO;2-0ArticleCASGoogle Scholar
  68. Guo B, Jia D, Fu W, Qiu Q (2003) Hygrothermal stability of dicyanate-novolac epoxy resin blends. Polym Degrad Stab 79(3):521–528. https://doi.org/10.1016/S0141-3910(02)00368-3ArticleCASGoogle Scholar
  69. Park SJ, Seo MK, Lee JR (2000) Isothermal cure kinetics of epoxy/phenol-novolac resin blend system initiated by cationic latent thermal catalyst. J Polym Sci A Polym Chem 38(16):2945–2956. https://doi.org/10.1002/1099-0518(20000815)38:16%3C2945::AID-POLA120%3E3.0.CO;2-6ArticleCASGoogle Scholar
  70. Hu YS, Prattipati V, Mehta S, Schiraldi DA, Hiltner A, Baer E (2005) Improving gas barrier of PET by blending with aromatic polyamides. Polym 46(8):2685–2698. https://doi.org/10.1016/j.polymer.2005.01.056ArticleCASGoogle Scholar
  71. Mendiburu-Valor E, Mondragon G, González N, Kortaberria G, Eceiza A, Peña-Rodriguez C (2021) Improving the efficiency for the production of bis-(2-Hydroxyethyl) terephtalate (BHET) from the glycolysis reaction of poly ethylene terephtalate (PET) in a pressure reactor. Polym 13(9):1461. https://doi.org/10.3390/polym13091461ArticleCASGoogle Scholar
  72. Nisticò R (2020) Polyethylene terephthalate (PET) in the packaging industry. Polym Test 90:106707. https://doi.org/10.1016/j.polymertesting.2020.106707ArticleCASGoogle Scholar
  73. Ke Y, Long C, Qi Z (1999) Crystallization, properties, and crystal and nanoscale morphology of PET–clay nanocomposites. J Appl Polym Sci 71(7):1139–1146. https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7%3C1139::AID-APP12%3E3.0.CO;2-EArticleCASGoogle Scholar
  74. Chang JH, Mun MK, Lee IC (2005) Poly(ethylene terephthalate) nanocomposite fibers by in situ polymerization: the thermomechanical properties and morphology. J Appl Polym Sci 98(5):2009–2016. https://doi.org/10.1002/app.22382ArticleCASGoogle Scholar
  75. Bizarria MT, Giraldi AL, de Carvalho CM, Velasco JI, d’Avila MA, Mei LH (2007) Morphology and thermomechanical properties of recycled PET–organoclay nanocomposites. J Appl Polym Sci 104(3):1839–1844. https://doi.org/10.1002/app.25836ArticleCASGoogle Scholar
  76. Visakh PM (2015) Polyethylene terephthalate: blends, composites, and nanocomposites–state of art, new challenges, and opportunities. PET Blend Comp Nanocomp. https://doi.org/10.1016/B978-0-323-31306-3.00001-4ArticleGoogle Scholar
  77. Letcher T, Rankouhi B, Javadpour S (2015) Experimental study of mechanical properties of additively manufactured ABS plastic as a function of layer parameters. In ASME Int Mech Eng Congress Expo 57359:V02AT02A018. American Society of Mechanical Engineers
  78. Praseetha S, BT M, Anusuya S (2019) Storage and security Issues of medical Images using cloud platform C. Server meant for Security. Int J Innov Technol Explor Eng 8(12):977–980 Google Scholar
  79. Djukic S, Bocahut A, Bikard J, Long DR (2020) Mechanical properties of amorphous and semi-crystalline semi-aromatic polyamides. Heliyon 6(4):e03857. https://doi.org/10.1016/j.heliyon.2020.e03857ArticleGoogle Scholar
  80. Xiao W, Yu H, Han K, Yu M (2005) Study on PET fiber modified by nanomaterials: improvement of dimensional thermal stability of PET fiber by forming PET/MMT nanocomposites. J Appl Polym Sci 96(6):2247–2252. https://doi.org/10.1002/app.21703ArticleCASGoogle Scholar
  81. Daramola OO, Akintayo OS (2017) Mechanical properties of epoxy matrix composites reinforced with green silica particles. Ann Fac Eng Hunedoara 15(4):167–174 CASGoogle Scholar
  82. Fernandes AC, Del Vecchio CJM, Castro GAV (1999) Mechanical properties of polyester mooring cables. Int J Offshore Polar Eng 9:03 Google Scholar
  83. Kiskan B, Yagci Y (2020) The journey of phenolics from the first spark to advanced materials. Isr J Chem 60(1–2):20–32. https://doi.org/10.1002/ijch.201900086ArticleCASGoogle Scholar
  84. Pilato L (2010) Resin chemistry. Phenolic resins: a century of progress, Berlin, Heidelberg, pp 41–91. https://doi.org/10.1007/978-3-642-04714-5_4BookGoogle Scholar
  85. Mohd Nurazzi N, Khalina A, Sapuan SM, Dayang Laila AH, Rahmah M, Hanafee Z (2017) A Review: fibres, polymer matrices and composites. J Sci Technol 25(4):1085–1102 Google Scholar
  86. Yang W, Jiao L, Wang X, Wu W, Lian H, Dai H (2021) Formaldehyde-free self-polymerization of lignin-derived monomers for synthesis of renewable phenolic resin. Int J Biol Macromol 166:1312–1319. https://doi.org/10.1016/j.ijbiomac.2020.11.012ArticleCASGoogle Scholar
  87. Zhou J, Yao Z, Chen Y, Wei D, Wu Y, Xu T (2013) Mechanical and thermal properties of graphene oxide/phenolic resin composite. Polym Compos 34(8):1245–1249. https://doi.org/10.1002/pc.22533ArticleCASGoogle Scholar
  88. Reghunadhan A, Thomas S (2017) Polyurethanes: structure, properties, synthesis, characterization, and applications. PUR Polym. https://doi.org/10.1016/B978-0-12-804039-3.00001-4ArticleGoogle Scholar
  89. Zia KM, Bhatti HN, Bhatti IA (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React Funct Polym 67(8):675–692. https://doi.org/10.1016/j.reactfunctpolym.2007.05.004ArticleCASGoogle Scholar
  90. Akindoyo JO, Beg MD, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications–a review. RSC Adv 6(115):114453–114482. https://doi.org/10.1039/C6RA14525FArticleCASGoogle Scholar
  91. Gadhave RV, Srivastava S, Mahanwar PA, Gadekar PT (2019) Recycling and disposal methods for polyurethane wastes: a review. Open J Polym Chem 9(2):39–51. https://doi.org/10.4236/ojpchem.2019.92004ArticleCASGoogle Scholar
  92. Haponiuk JT, Formela K (2017) PU polymers, their composites, and nanocomposites: state of the art and new challenges. PUR Polym. https://doi.org/10.1016/B978-0-12-804065-2.00001-2ArticleGoogle Scholar
  93. Khatoon H, Ahmad S (2017) A review on conducting polymer reinforced polyurethane composites. J Ind Eng Chem 53:1–22. https://doi.org/10.1016/j.jiec.2017.03.036ArticleCASGoogle Scholar
  94. Lin Q, Qu L, Lü Q, Fang C (2013) Preparation and properties of graphene oxide nanosheets/cyanate ester resin composites. Polym Test 32(2):330–337. https://doi.org/10.1016/j.polymertesting.2012.11.014ArticleCASGoogle Scholar
  95. Hamerton I, Hay JN (1998) Recent technological developments in cyanate ester resins. High Perform Polym 10(2):163–174. https://doi.org/10.1088/0954-0083/10/2/001ArticleCASGoogle Scholar
  96. Nair CR, Mathew D, Ninan KN (2001) Cyanate ester resins, recent developments. New polymerization techniques and synthetic methodologies. Adv Polym Sci. https://doi.org/10.1007/3-540-44473-4_1ArticleGoogle Scholar
  97. Hamad K, Kaseem M, Yang HW, Deri F, Ko YG (2015) Properties and medical applications of polylactic acid: a review. Exp Polym Lett 9(5):435–455. https://doi.org/10.3144/expresspolymlett.2015.42ArticleCASGoogle Scholar
  98. Chang BP, Mohanty AK, Misra M (2020) Studies on durability of sustainable biobased composites: a review. RSC Adv 10(31):17955–17999. https://doi.org/10.1039/C9RA09554CArticleCASGoogle Scholar
  99. Andrady AL, Pandey KK, Heikkilä AM (2019) Interactive effects of solar UV radiation and climate change on material damage. Photochem Photobiol Sci 18(3):804–825. https://doi.org/10.1039/C8PP90065EArticleCASGoogle Scholar
  100. Nagarajan V, Mohanty AK, Misra M (2016) Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustainable Chem Eng 4(6):2899–2916 CASGoogle Scholar
  101. Fang C, Zhang J, Chen X, Weng GJ (2019) A monte carlo model with equipotential approximation and tunneling resistance for the electrical conductivity of carbon nanotube polymer composites. Carbon 146:125–138. https://doi.org/10.1016/j.carbon.2019.01.098ArticleCASGoogle Scholar
  102. Abidin MSZ, Herceg T, Greenhalgh ES, Shaffer M, Bismarck A (2019) Enhanced fracture toughness of hierarchical carbon nanotube reinforced carbon fibre epoxy composites with engineered matrix microstructure. Compos Sci Technol 170:85–92. https://doi.org/10.1016/j.compscitech.2018.11.017ArticleCASGoogle Scholar
  103. Hemath M, Mavinkere Rangappa S, Kushvaha V, Dhakal HN, Siengchin S (2020) A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polym Compos 41(10):3940–3965. https://doi.org/10.1002/pc.25703ArticleCASGoogle Scholar
  104. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Progress in Polym Sci 33(8):820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004ArticleCASGoogle Scholar
  105. Vink ET, Davies S (2015) Life cycle inventory and impact assessment data for 2014 Ingeo™ polylactide production. Ind Biotechnol 11(3):167–180. https://doi.org/10.1089/ind.2015.0003ArticleCASGoogle Scholar
  106. Murariu M, Dechief AL, Paint Y, Berlier K, Bonnaud L, Dubois P (2008) The green challenge: high performance PLA (nano) composites. Jec comp magazine 45:66–69 Google Scholar
  107. Ilyas RA, Sapuan SM, Harussani MM, Hakimi MYAY, Haziq MZM, Atikah MSN, Asyraf MRM et al (2021) Polylactic acid (PLA) biocomposite: processing, additive manufacturing and advanced applications. Polymers 13(8):1326. https://doi.org/10.3390/polym13081326ArticleCASGoogle Scholar
  108. Jojith R, Sam M, Radhika N (2021) Recent advances in tribological behavior of functionally graded composites: a review. Eng Sci Technol Int J. https://doi.org/10.1016/j.jestch.2021.05.003ArticleGoogle Scholar
  109. Sathish M, Radhika N, Saleh B (2021) A critical review on functionally graded coatings: methods, properties, and challenges. Compos B Eng 225:109278. https://doi.org/10.1016/j.compositesb.2021.109278ArticleCASGoogle Scholar
  110. Radhika N, Thirumalini S, Shivashankar A (2018) Investigation on mechanical and adhesive wear behavior of centrifugally cast functionally graded copper/SiC metal matrix composite. Trans Indian Inst Met 71(6):1311–1322. https://doi.org/10.1007/s12666-017-1246-zArticleCASGoogle Scholar
  111. Ponsuriyaprakash S, Udhayakumar P, Pandiyarajan R (2020) Experimental investigation of abs matrix and cellulose fiber reinforced polymer composite materials. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1841065ArticleGoogle Scholar
  112. Rajak DK, Pagar DD, Kumar R, Pruncu CI (2019) Recent progress of reinforcement materials: a comprehensive overview of composite materials. J Mater Res Technol 8(6):6354–6374. https://doi.org/10.1016/j.jmrt.2019.09.068ArticleCASGoogle Scholar
  113. Dong YX, Wang Q, Yang CY, Xu WZ, Zhou S, Liu DS, Tian JH (2019) Effect of process parameters on mechanical properties of carbon fiber reinforced abs composites. Key Eng Mater 815:145–215. https://doi.org/10.4028/www.scientific.net/KEM.815.145ArticleGoogle Scholar
  114. Golub M, Guo X, Jung M, Zhang J (2016) 3D printed ABS and carbon fiber reinforced polymer specimens for engineering education. Springer, Cham, pp 281–285. https://doi.org/10.1007/978-3-319-48768-7_43BookGoogle Scholar
  115. Sharma V, Goyal M, Jindal P (2017) Preparation, characterization and study of mechanical properties of graphene/ABS nano-composites. Ind J Sci and Tech 10(17):1–5. https://doi.org/10.17485/ijst/2017/v10i17/114414ArticleCASGoogle Scholar
  116. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004ArticleCASGoogle Scholar
  117. Mura A, Adamo F, Wang H, Leong WS, Ji X, Kong J (2019) Investigation about tribological behavior of ABS and PC-ABS polymers coated with graphene. Tribology Int 134:335–340. https://doi.org/10.1016/j.triboint.2019.02.017ArticleCASGoogle Scholar
  118. Gaitonde VN, Karnik SR, Mata F, Davim JP (2009) Study on some aspects of machinability in unreinforced and reinforced polyamides. J Compos Mater 43(7):725–739. https://doi.org/10.1177/0021998309101298ArticleCASGoogle Scholar
  119. Yoshihara N (2006) Adjusting the lengths of glass fibers and the relationship between fiber length and mechanical properties for reinforced polyethylene terephthalate. J polym eng 26(6):547–564. https://doi.org/10.1515/POLYENG.2006.26.6.547ArticleGoogle Scholar
  120. https://matmatch.com/materials/mbas197-polyethylene-terephthalate-reinforced-with-15-glass-fibers-pet-gf15-
  121. Wang D, Liu Q, Wang Y, Li M, Liu K, Chen J, Qing X (2015) Reinforcement of polyethylene terephthalate via addition of carbon-based materials. Poly (Ethylene Terephthalate) based blends. William Andrew Publishing, Comp and Nanocomp, pp 41–64. https://doi.org/10.1016/B978-0-323-31306-3.00003-8ChapterGoogle Scholar
  122. Shabafrooz V, Bandla S, Allahkarami M, Hanan JC (2018) Graphene/polyethylene terephthalate nanocomposites with enhanced mechanical and thermal properties. J Polym Res 12:1–2. https://doi.org/10.1007/s10965-018-1621-4ArticleCASGoogle Scholar
  123. Al-Harthi MA, Bahuleyan BK (2018) Mechanical properties of polyethylene-carbon nanotube composites synthesized by in situ polymerization using metallocene catalysts. Adv Mater Sci. https://doi.org/10.1155/2018/4057282ArticleGoogle Scholar
  124. Xu A, Wang Y, Xu X, Xiao Z, Liu R (2020) A clean and sustainable cellulose-based composite film reinforced with waste plastic polyethylene terephthalate. Adv Mater Sci Eng. https://doi.org/10.1155/2020/7323521ArticleGoogle Scholar
  125. Krishnasamy S, Thiagamani SMK, Kumar CM, Nagarajan R, Shahroze RM, Siengchin S, MP ID (2019) Recent advances in thermal properties of hybrid cellulosic fiber reinforced polymer composites. Int J Biol Macromol 141:1–13. https://doi.org/10.1016/j.ijbiomac.2019.08.231ArticleCASGoogle Scholar
  126. Shanavas S (2014) Mechanical characterization of carbon fibre reinforced epoxy composite. Int J Eng Res Technol 03:01 Google Scholar
  127. Batabyal A, Nayak RK, Tripathy S (2018) Evaluation of mechanical properties of glass fibre and carbon fibre reinforced polymer composite. J Commun Eng Syst 8(2):66–74 Google Scholar
  128. Berhanuddin NI, Zaman I, Rozlan SA, Karim MA, Manshoor B, Khalid A, Chan SW, Meng Q (2017) Enhancement of mechanical properties of epoxy/graphene nanocomposite. J Phys Conf Ser 914(1):012036 Google Scholar
  129. Chatterjee S, Wang JW, Kuo WS, Tai NH, Salzmann C, Li WL, Chu BTT (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10. https://doi.org/10.1016/j.cplett.2012.02.006ArticleCASGoogle Scholar
  130. Mutalikdesai S, Hadapad A, Patole S, Hatti G (2018) Fabrication and mechanical characterization of glass fibre reinforced epoxy hybrid composites using fly ash/nano clay/zinc oxide as filler. IOP Conf Ser Mater Sci Eng (Discontin) 376(1):012061 Google Scholar
  131. Reddy S P, Rao P C S, Reddy A C, Parmeswar G (2014) Tensile and flexural strength of glass fiber epoxy composites. Int Conf Adv Mater Manuf Technol
  132. El-Wazery MS, El-Elamy MI, Zoalfakar SH (2017) Mechanical properties of glass fiber reinforced polyester composites. Int J Appl Sci 14(3):121–131 Google Scholar
  133. Sakin R, Ay I, Yaman R (2008) An investigation of bending fatigue behavior for glass-fiber reinforced polyester composite materials. Mater Des 29(1):212–217. https://doi.org/10.1016/j.matdes.2006.11.006ArticleCASGoogle Scholar
  134. Pickering KL, Efendy MA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Comp Part A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038ArticleCASGoogle Scholar
  135. Nurazzi NM, Harussani MM, Aisyah HA, Ilyas RA, Norrrahim MNF, Khalina A, Abdullah N (2021) Treatments of natural fiber as reinforcement in polymer composites—a short review. Funct Comp Struct 3(2):024002. https://doi.org/10.1088/2631-6331/abff36ArticleCASGoogle Scholar
  136. Mahmud S, Hasan KF, Jahid MA, Mohiuddin K, Zhang R, Zhu J (2021) Comprehensive review on plant fiber-reinforced polymeric biocomposites. J Mater Sci. https://doi.org/10.1007/s10853-021-05774-9ArticleGoogle Scholar
  137. Hasan KF, Horváth PG, Bak M, Alpár T (2021) A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Advances 11(18):10548–10571. https://www.researchgate.net/publication/350018366
  138. Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P, White RH (2011) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fiber polym 12(7):919–926. https://doi.org/10.1007/s12221-011-0919-1ArticleCASGoogle Scholar
  139. Aliotta L, Gigante V, Coltelli MB, Cinelli P, Lazzeri A, Seggiani M (2019) Thermo-mechanical properties of PLA/short flax fiber biocomposites. Appl Sci 9(18):3797. https://doi.org/10.3390/app9183797ArticleCASGoogle Scholar
  140. More AP (2021) Flax fiber–based polymer composites: a review. Adv Comp Hy Mater. https://doi.org/10.1007/s42114-021-00246-9ArticleGoogle Scholar
  141. Naveen J, Jawaid M, Amuthakkannan P, Chandrasekar M (2019) Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, pp 427–440. https://doi.org/10.1016/B978-0-08-102292-4.00021-7ChapterGoogle Scholar
  142. Saxena M, Pappu A, Haque R, Sharma A (2011) Sisal fiber based polymer composites and their applications. Cellulose fibers: Bio-and nano-polym comp. Springer, Berlin, Heidelberg, pp 589–659. https://doi.org/10.1007/978-3-642-17370-7_22ChapterGoogle Scholar
  143. Koyanagi J, Ogihara S, Nakatani H, Okabe T, Yoneyama S (2014) Mechanical properties of fiber/matrix interface in polymer matrix composites. Adv Comp Mater 23(5–6):551–570. https://doi.org/10.1080/09243046.2014.915125ArticleCASGoogle Scholar
  144. Jesson DA, John FW (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52(3):321–354. https://doi.org/10.1080/15583724.2012.710288ArticleCASGoogle Scholar
  145. Reifsnider KL (1994) Modelling of the interphase in polymer-matrix composite material systems. Comp 25(7):461–469. https://doi.org/10.1016/0010-4361(94)90170-8ArticleCASGoogle Scholar
  146. Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH (2012) Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Progress in Mater Sci 57(4):660–723. https://doi.org/10.1016/j.pmatsci.2011.08.001ArticleCASGoogle Scholar
  147. Advani SG, Hsiao KT (eds) (2012) Manufacturing techniques for polymer matrix composites (PMCs). Elsevier Google Scholar
  148. Omrani E, Menezes PL, Rohatgi PK (2016) State of the art on tribological behavior of polymer matrix cposites reinforced with natural fibers in the green materials world. Eng Sci Technol Int J 19(2):717–736. https://doi.org/10.1016/j.jestch.2015.10.007ArticleGoogle Scholar
  149. Chung DD (2010) Mechanical properties-composite materials: science and applications. Eng Mater Process. https://doi.org/10.1007/978-1-84882-831-5_3ArticleGoogle Scholar
  150. Du Y, Li D, Liu L, Gai G (2018) Recent achievements of self-healing graphene/polymer composites. Polym 10(2):114. https://doi.org/10.3390/polym10020114ArticleCASGoogle Scholar
  151. Fiore V, Scalici T, Nicoletti F, Vitale G, Prestipino M, Valenza A (2016) A new eco-friendly chemical treatment of natural fibres: effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Compos B Eng 85:150–160. https://doi.org/10.1016/j.compositesb.2015.09.028ArticleCASGoogle Scholar
  152. Campbell FC (ed) (2003) Manufacturing processes for advanced composites. Elsevier, UK Google Scholar
  153. Minchenkov K, Vedernikov A, Safonov A, Akhatov I (2021) Thermoplastic pultrusion: a review. Polym 13:180. https://doi.org/10.3390/polym13020180ArticleCASGoogle Scholar
  154. Vedernikov A, Safonov A, Tucci F, Carlone P, Akhatov I (2020) Pultruded materials and structures: a review. J Compos Mater 54(26):4081–4117. https://doi.org/10.1177/0021998320922894ArticleGoogle Scholar
  155. Starr TF, Ketel JAAP (2000) Composites and pultrusion: pultrusion for engineers. Woodhead Publishing Limited, England, Cambridge, pp 1–18 Google Scholar
  156. Fairuz AM, Sapuan SM, Zainudin ES, Jaafar CNA (2015) Pultrusion process of natural fibre-reinforced polymer composites. Manufacturing of Natural Fibre Reinforced Polymer Compossites. Springer, pp 217–231 Google Scholar
  157. Ben G, Shoji A (2005) Pultrusion techniques and evaluations of sandwich beam using phenolic foam composite. Adv Compos Mater 14(3):277–288. https://doi.org/10.1163/1568551054922629ArticleCASGoogle Scholar
  158. Bechtold G, Wiedmer S, Friedrich K (2002) Pultrusion of thermoplastic composites-new developments and modelling studies. J Thermoplast Compos Mater 15(5):443–465. https://doi.org/10.1177/0892705702015005202ArticleGoogle Scholar
  159. Xie J, Wang S, Cui Z, Wu J (2019) Process optimization for compression molding of carbon fiber–reinforced thermosetting polymer. Mater 12(15):2430. https://doi.org/10.3390/ma12152430ArticleCASGoogle Scholar
  160. Singha AS, Thakur VK (2008) Fabrication and study of lignocellulosic hibiscus sabdariffa fiber reinforced polymer composites. Bio Resour 3(4):1173–1186 Google Scholar
  161. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117. https://doi.org/10.1016/j.carbpol.2014.03.039ArticleCASGoogle Scholar
  162. Maciel LG, do Carmo MA, Azevedo L, Daguer H, Molognoni L, de Almeida MM, Granato D, Rosso ND (2018) Hibiscus sabdariffa anthocyanins-rich extract: chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem Toxicol 113:187–197. https://doi.org/10.1016/j.fct.2018.01.053ArticleCASGoogle Scholar
  163. Song Y, Gandhi U, Sekito T, Vaidya UK, Vallury S, Yang A, Osswald T (2018) CAE method for compression molding of carbon fiber-reinforced thermoplastic composite using bulk materials. Compos Part A Appl Sci 114:388–397. https://doi.org/10.1016/j.compositesa.2018.09.002ArticleCASGoogle Scholar
  164. De D, De D, Adhikari B (2004) The effect of grass fiber filler on curing characteristics and mechanical properties of natural rubber. Polym Adv Technol 15(12):708–715. https://doi.org/10.1002/pat.530ArticleCASGoogle Scholar
  165. Ismail NF, Sulong AB, Muhamad N, Tholibon D, MdRadzi MK, Wanlbrahim WAS (2015) Review of the compression moulding of natural fiber-reinforced thermoset composites: material processing and characterisations. Pertanika J Trop Agric Sci 38(4):533–547 Google Scholar
  166. Park CH, Lee WI (2012) Compression molding in polymer matrix composites. Manufacturing Techniques for Polymer Matrix Composites (PMCs). Elsevier, pp 47–94. https://doi.org/10.1533/9780857096258.1.47ChapterGoogle Scholar
  167. Zabrocki K, Tiburtius C, Doring J, Richter K, inventors; Bayer AG, assignee (1985) Glass-fiber-reinforced ABS-molding compositions. United States patent US 4,547,533
  168. Advani SG, Hsiao K-T (eds) (2012) Manufacturing techniques for polymer matrix composites (PMCs). Woodhead Publishing Limited, UK Google Scholar
  169. Cansever CC (2007) Effects of injection molding conditions on the mechanical properties of polyamide/glass fiber composites [M.S.–Master of Science]. Middle East Technical University
  170. Sambale AK, Schöneich M, Stommel M (2017) Influence of the processing parameters on the fiber-matrix-interphase in short glass fiber-reinforced thermoplastics. Polym 9(6):221. https://doi.org/10.3390/polym9060221ArticleCASGoogle Scholar
  171. Parker G (2001) Encyclopedia of materials: science and technology. In: Encyclopedia of materials: science, pp 3703–3707. hthttp://eprints.soton.ac.uk/id/eprint/259958
  172. Park SJ, Seo MK (2011) Intermolecular force. Interface. Sci Technol 18:1–57. https://doi.org/10.1016/B978-0-12-375049-5.00001-3ArticleGoogle Scholar
  173. Cadei JMC (2003) Fatigue of FRP composites in civil engineering applications. Fatigue in Composites. Elsevier, pp 658–685 Google Scholar
  174. Ravichandran M, Balasubramanian M, Chairman CA, Pritima D, Dhinakaran V, Stalin B (2020) Recent developments in polymer matrix composites–a review. IOP Conf Series: Mater Sci and Eng 988(1):012096. https://doi.org/10.1088/1757-899X/988/1/012096ArticleCASGoogle Scholar
  175. Friedrich K, Almajid AA (2013) Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater 20(2):107–128. https://doi.org/10.1007/s10443-012-9258-7ArticleCASGoogle Scholar
  176. Srivastava V, Srivastava R (2013) Advances in automotive polymer applications and recycling. Int J Innov 2(3):744–746 Google Scholar
  177. Namata S (2015) Using polymers as the main material in engine blocks and components. J Appl Mech Eng 4:182 Google Scholar
  178. Pradeep SA, Iyer RK, Kazan H, Pilla S (2017) Automotive applications of plastics: past, present, and future. App Plastics Eng Handbook pp.651–673. Doi: https://doi.org/10.1016/B978-0-323-39040-8.00031-6
  179. Mann D (1999) Automotive plastics and composites: worldwide markets and trends to 2007. Elsevier Google Scholar
  180. Lyu MY, Choi TG (2015) Research trends in polymer materials for use in lightweight vehicles. Int J Precis 16(1):213–220. https://doi.org/10.1007/s12541-015-0029-xArticleGoogle Scholar
  181. Munde YS, Ingle RB, Siva I (2018) Investigation to appraise the vibration and damping characteristics of coir fibre reinforced polypropylene composites. Adv Mater Process Technol 4(4):639–650. https://doi.org/10.1080/2374068X.2018.1488798ArticleGoogle Scholar
  182. Verma D, Gope PC, Shandilya A, Gupta A, Maheshwari MK (2013) Coir fiber reinforcement and application in polymer composites. J Mater Environ Sci 4(2):263–276 CASGoogle Scholar
  183. Solazzi L, Buffoli A (2019) Telescopic hydraulic cylinder made of composite material. App Compos Mater 26(4):1189–1206. https://doi.org/10.1007/s10443-019-09772-8ArticleCASGoogle Scholar
  184. Ben Mlik Y, Jaouadi M, Rezig S, Khoffi F, Slah M, Durand B (2018) Kenaf fibre-reinforced polyester composites: flexural characterization and statistical analysis. J Text Inst 109(6):713–722. https://doi.org/10.1080/00405000.2017.1365580ArticleCASGoogle Scholar
  185. Huang K, Kureemun U, Teo WS, Lee HP (2018) Vibroacoustic behavior and noise control of flax fiber-reinforced polypropylene composites. J Nat Fibers. https://doi.org/10.1080/15440478.2018.1433096ArticleGoogle Scholar
  186. Saxena M, Pappu A, Haque R, Sharma A (2011) Sisal fiber-based polymer composites and their applications. Cellulose Fibers: Bio and Nano-polymer Composites. Springer, pp 589–659. https://doi.org/10.1007/978-3-642-17370-7_22ChapterGoogle Scholar
  187. Masuelli MA (2013) Introduction of fibre-reinforced polymers–polymers and composites: concepts, properties and processes. Fiber Reinf Polym Techno Appl Concrete Repair. https://doi.org/10.5772/54629ArticleGoogle Scholar
  188. Shinde NG, Patel DM (2020) A short review on automobile dashboard materials. In IOP Conf Ser Mater Sci Eng 810(1):012033. https://doi.org/10.1088/1757-899X/810/1/012033ArticleGoogle Scholar
  189. Mair-Bauernfeind C, Zimek M, Asada R, Bauernfeind D, Baumgartner RJ, Stern T (2020) Prospective sustainability assessment: the case of wood in automotive applications. Int J Life Cycle Assess 25(10):2027–2049. https://doi.org/10.1007/s11367-020-01803-yArticleGoogle Scholar
  190. Fekete JR, Hall JN (2017) Design of auto body: materials perspective. Automotive Steels. Elsevier, pp 1–18. https://doi.org/10.1016/B978-0-08-100638-2.00001-8ChapterGoogle Scholar
  191. Gand AK, Chan TM, Mottram JT (2013) Civil and structural engineering applications, recent trends, research and developments on pultruded fiber reinforced polymer closed sections: a review. Front Struct Civ Eng 7(3):227–244. https://doi.org/10.1007/s11709-013-0216-8ArticleGoogle Scholar
  192. Abdel-Fattah H, El-Hawary MM (1999) Flexural behavior of polymer concrete. Constr Build Mater 13(5):253–262. https://doi.org/10.1016/S0950-0618(99)00030-6ArticleGoogle Scholar
  193. Jo BW, Park SK, Kim DK (2008) Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete. Constr Build Mater 22(1):14–20. https://doi.org/10.1016/j.conbuildmat.2007.02.009ArticleGoogle Scholar
  194. Barbuta M, Diaconescu RM, Harja M (2012) Using neural networks for prediction of properties of polymer concrete with fly ash. J Mater Civ Eng 24(5):523–528. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000413ArticleCASGoogle Scholar
  195. Giusca R, Corobceanu V (2010) New technologies for strengthening damaged reinforced concrete structures. Curr Sci 96(6):829–833 Google Scholar
  196. Bărbuţă M, Harja M, Baran I (2010) Comparison of mechanical properties for polymer concrete with different types of filler. J Mater Civ Eng 22(7):696–701. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000069ArticleCASGoogle Scholar
  197. Rajkumar A, Madhavaraj K, Umapathy U (2016) Behaviour of concrete filled pvc plastic tubes (CFPT) placed in columns. Int J Eng Res Technol 4:25 Google Scholar
  198. Frollini E, Silva CG, Ramires EC (2013) Phenolic resins as a matrix material in advanced fiber-reinforced polymer (FRP) composites. Advanced FRP Composites for Structural Applications. Elsevier, pp 7–43 Google Scholar
  199. Choi MH, Jeon BH, Chung IJ (2000) The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites. Polymer 41(9):3243–3252. https://doi.org/10.1016/S0032-3861(99)00532-7ArticleCASGoogle Scholar
  200. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49(12):832–864. https://doi.org/10.1002/polb.22259ArticleCASGoogle Scholar
  201. Williams DF (1999) The Williams dictionary of biomaterials. Liverpool University Press Google Scholar
  202. Pj JF, Arun KJ, Navas AA, Joseph I (2018) Biomedical applications of polymers—an overview. Macromolecules 28(4):939–944. https://doi.org/10.19080/CTBEB.2018.15.555909ArticleGoogle Scholar
  203. Bernacca GM, O’Connor B, Williams DF, Wheatley DJ (2002) Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young’s modulus and leaflet thickness. Biomater 23(1):45–50. https://doi.org/10.1016/S0142-9612(01)00077-1ArticleCASGoogle Scholar
  204. Ghanbari H, Viatge H, Kidane AG, Burriesci G, Tavakoli M, Seifalian AM (2009) Polymeric heart valves: new materials, emerging hopes. Trends Bio Technol 27(6):359–367. https://doi.org/10.1016/j.tibtech.2009.03.002ArticleCASGoogle Scholar
  205. Strohbach A, Busch R (2015) Polymers for cardiovascular stent coatings. Int J Polym Sci. https://doi.org/10.1155/2015/782653ArticleGoogle Scholar
  206. Wasyłeczko M, Sikorska W, Chwojnowski A (2020) Review of synthetic and hybrid scaffolds in cartilage tissue engineering. Membranes 10(11):348. https://doi.org/10.3390/membranes10110348ArticleCASGoogle Scholar
  207. Salernitano E, Migliaresi C (2003) Composite materials for biomedical applications: a review. J Appl Biomater 1(1):3–18 CASGoogle Scholar
  208. Ravi S, Chaikof EL (2010) Biomaterials for vascular tissue engineering. Regen Med 5(1):107–120. https://doi.org/10.2217/rme.09.77ArticleCASGoogle Scholar
  209. Singha P, Locklin J, Handa H (2017) A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater 50:20–40. https://doi.org/10.1016/j.actbio.2016.11.070ArticleCASGoogle Scholar
  210. Venkatesan N, Shroff S, Jayachandran K, Doble M (2010) Polymers as ureteral stents. J Endourol 24(2):191–198 Google Scholar
  211. Gavasane AJ, Pawar HA (2014) Synthetic biodegradable polymers used in controlled drug delivery system: an overview. J Clin Pharmacol 3(2):1–7. https://doi.org/10.4172/2167-065X.1000121ArticleGoogle Scholar
  212. Capulli AK, MacQueen LA, Sheehy SP, Parker KK (2016) Fibrous scaffolds for building hearts and heart parts. Adv Drug Deliv Rev 96:83–102. https://doi.org/10.1016/j.addr.2015.11.020ArticleCASGoogle Scholar
  213. Pok S, Myers JD, Madihally SV, Jacot JG (2013) A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomater 9(3):5630–5642. https://doi.org/10.1016/j.actbio.2012.10.032ArticleCASGoogle Scholar
  214. Gloria A, De Santis R, Ambrosio L (2010) Polymer-based composite scaffolds for tissue engineering. J Appl Biomater 8(2):57–67 CASGoogle Scholar
  215. Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3(3):321–330. https://doi.org/10.1016/j.actbio.2007.01.002ArticleCASGoogle Scholar
  216. Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35(3):208–213. https://doi.org/10.1557/mrs2010.653ArticleCASGoogle Scholar
  217. Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polym 49(7):1885–1891. https://doi.org/10.1016/j.polymer.2008.02.022ArticleCASGoogle Scholar
  218. Tang J, Bao L, Li X, Chen L, Hong FF (2015) Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. J Mater Chem B 3(43):8537–8547. https://doi.org/10.1039/C5TB01144BArticleCASGoogle Scholar
  219. Zhang Y, Broekhuis A, Stuart MC, Picchioni F (2008) Polymeric amines by chemical modifications of alternating aliphatic polyketones. J Appl Polym Sci 107(1):262–271. https://doi.org/10.1002/app.27029ArticleCASGoogle Scholar
  220. Zarrintaj P, Ahmadi Z, Saeb MR, Mozafari M (2018) Poloxamer-based stimuli-responsive biomaterials. Mater Today Proc 5(7):15516–15523. https://doi.org/10.1016/j.matpr.2018.04.158ArticleCASGoogle Scholar
  221. Yang D, Mosadegh B, Ainla A, Lee B, Khashai F, Suo Z, Whitesides GM (2015) Actuators: buckling of elastomeric beams enables actuation of soft machines. Adv Mater 27(41):6305–6305. https://doi.org/10.1002/adma.201570274ArticleGoogle Scholar
  222. Poole-Warren LA, Patton AJ (2016) Introduction to biomedical polymers and biocompatibility. Biosynthetic polymer for medical applications. Elsevier, pp 3–31. https://doi.org/10.1016/B978-1-78242-105-4.00001-8ChapterGoogle Scholar
  223. Khan F, Tanaka M, Ahmad SR (2015) Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J Mater Chem B 3(42):8224–8249. https://doi.org/10.1039/C5TB01370DArticleCASGoogle Scholar
  224. Theato P, Sumerlin BS, O’Reilly RK, Epps TH III (2013) Stimuli responsive materials. Chem Soc Rev 42(17):7055–7056. https://doi.org/10.1021/ja510147nArticleCASGoogle Scholar
  225. Muskovich M, Bettinger CJ (2012) Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv Healthcare Mater 1(3):248–266. https://doi.org/10.1002/adhm.201200071ArticleCASGoogle Scholar
  226. Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC (2015) Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc 137(6):2140–2154. https://doi.org/10.1021/ja510147nArticleCASGoogle Scholar
  227. Chang SY, Cheng P, Li G, Yang Y (2018) Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2(6):1039–1054. https://doi.org/10.1016/j.joule.2018.04.005ArticleCASGoogle Scholar
  228. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photon 6(3):153–161 CASGoogle Scholar
  229. Zhang Z, Liao M, Lou H, Hu Y, Sun X, Peng H (2018) Conjugated polymers for flexible energy harvesting and storage. Adv Mater 30(13):1704261. https://doi.org/10.1002/adma.201704261ArticleCASGoogle Scholar
  230. Han M, Wang H, Yang Y (2019) Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat Electron 2:26–35. https://doi.org/10.1038/s41928-018-0189-7ArticleGoogle Scholar
  231. Manish K L, Ujendra K, Saurabh C, Inderdeep S (2016) Secondary processing of polymer matrix composites: challenges and opportunities. Int Conf Latest Develop Mater Manuf QC 2016
  232. Chawla KK (2012) Composite materials: science and engineering. Springer, New York Google Scholar
  233. Sands JM, Fink BK, McKnight SH, Newton CH, Gillespie JW Jr, Palmese GR (2001) Environmental issues for polymer matrix composites and structural adhesives. Clean Prod Process 2(4):228–235. https://doi.org/10.1007/s100980000089ArticleGoogle Scholar
  234. Goodship V (2012) Recycling issues in polymer matrix composites. Failure Mechanisms in PMC. Elsevier, pp 337–367. https://doi.org/10.1533/9780857095329.2.337ChapterGoogle Scholar
  235. Wu RJ (1998) Some new developing trends for polymer matrix composites. Materials science and engineering serving society. Elsevier, pp 226–231. https://doi.org/10.1016/B978-044482793-7/50053-9ChapterGoogle Scholar
  236. Gul S, Awais M, Jabeen S, Farooq M (2020) Recent trends in preparation and applications of biodegradable polymer composites. J Renew Mater 8(10):1305–1326. https://doi.org/10.32604/jrm.2020.010037ArticleCASGoogle Scholar
  237. Maheswari CU, Reddy KO, Muzenda E, Shukla M, Rajulu AV (2013) Mechanical properties and chemical resistance of short tamarind fiber/unsaturated polyester composites: influence of fiber modification and fiber content. Int J Polym Analysis Charact 18(7):520–533. https://doi.org/10.1080/1023666X.2013.816073ArticleCASGoogle Scholar
  238. Torres FG, Cubillas ML (2005) Study of the interfacial properties of natural fibre reinforced polyethylene. Polym testing 24(6):694–698. https://doi.org/10.1016/j.polymertesting.2005.05.004ArticleCASGoogle Scholar
  239. Shekar HS, Ramachandra MJMTP (2018) Green composites: a review. Mater Today Proc 5(1):2518–2526. https://doi.org/10.1016/j.matpr.2017.11.034ArticleCASGoogle Scholar
  240. Benzait Z, Trabzon L (2018) A review of recent research on materials used in polymer–matrix composites for body armor application. J Comp Mater 52(23):3241–3263. https://doi.org/10.1177/0021998318764002ArticleCASGoogle Scholar
  241. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Comp Part B Eng 110:442–458 CASGoogle Scholar

Author information

Authors and Affiliations

  1. Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India S. Kangishwar, N. Radhika, Asad Amaan Sheik, Abhinav Chavali & S. Hariharan
  1. S. Kangishwar